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1. INTRODUCTION 

1.1. Abstract 

In this paper we propose a method to model the heating 

or cooling of a single-zone insulated space e.g., room, 

building. A general approach for modeling the dynamics 

of a building's transient thermal response to active heat-

ing or cooling is given.  

We provide a summary of commonly used non-para-

metric optimal start-time algorithms. Lastly, we de-

scribe a novel parametric-based a lgorithm for estimat-

ing the optimal start-time utilizing a reference-curve 

which eliminates the need for analysis based on regres-

sion techniques such as described in [1]. 

1.2. Introduction 

To ensure a building’s comfort-level temperature, set-

point spT , is established at the start of the facilities occu-

pied hours oct , building managers often start the HVAC 

heating/cooling at a  start-time st a fixed time prior to the 

buildings start of operation.  

The delay-time dt is the pre-conditioning time needed to 

overcome the building's thermal inertia and ensure ac-

ceptable comfort level set-point spT is reached prior to 

the start of the occupied period oct .  

As stated, in many cases the start of the pre-condition-

ing start time st  is based on a fixed number of hours 

prior to start of the occupied period oct . This fixed start-

time is referred to as set-back. This is often the method-

ology employed when HVAC Roof Top Units (RTUs) 

are installed, where the start sequence is set at installa-

tion [2]. 

Without a priori knowledge of the building’s specific 

thermal characteristics such as: time-constant, thermal 

resistance, thermal capacitance. The facility managers 

often resort to setting the start-time st to a very con-

servative value to ensure comfort levels are reached at 

worst case outside air temperature conditions.  

 

Thus, start-times st are typically 1 to 2 hours prior to the 

start of occupancy oct , depending on the energy capacity 

of the equipment, thermal characteristics of the building 

and the geographic temperature profile.  

To illustrate; consider a heating system in the Northeast-

ern United States that is designed for worst case outdoor 

temperature of 0°F, it is obvious the preponderance of 

days would require a significantly shorter pre-condition-

ing period dt due to modest outdoor temperatures rela-

tive to worst case conditions. In light of this, there exist 

an opportunity for energy savings by optimizing the 

start-time st .  

The optimal start-time algorithms described in this pa-

per seek to minimize the duration of the pre-condition-

ing period dt based on existing indoor and outdoor tem-

perature conditions. That is, it seeks the minimal pre-

conditioning period dt necessary to overcome the build-

ings thermal inertia and thermal losses as a function of 

outside temperature oT .  

It should be noted that during pre-conditioning, fresh air 

is not required. Therefore, energy is saved not only from 

reduced run-time of the heating and cooling equipment 

but also by reducing the fresh air to a minimum result-

ing in reduced supply fan power [2].  

Although this paper focuses on the heating of a build-

ing, the results are easily extended to the cooling of a  

building. The difference is in the “sign” of the heat gen-

erator. For heating, the heat generator is positive 0gQ  , 

pumping thermal energy into the building. For cooling, 

the heat generator is negative 0gQ  , pumping thermal 

energy out of the building.  
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The following Figure 1-1 illustrates a typical building’s 

heating profile for the occupied and unoccupied periods.  

Figure 1-1

 Room temp for a typical building (not to scale) 

The occupied period is characterized by a constant com-

fort-level temperature referred to as the temperature set-

point denoted by spT .  

Comfort level is maintained by the heat source gQ until 

the beginning of the unoccupied period at which point 

the heat source gQ is turned off. At that point the indoor 

temperature ( )iT t decays exponentially until it reaches 

equilibrium with the outdoor temperature oT or until it 

reaches the unoccupied set-point temperature uoT  

At some point st prior to the start of the occupied period 

the heat source gQ is turned on and the indoor tempera-

ture ( )iT t increases exponentially until it reaches the oc-

cupied set-point temperature spT .  

 

 

 

  

 

 

 
 

Figure 1-2 Optimal Start 

Figure 1-1 shows a hypothetical case illustrating the dif-

ference between optimal and fixed start-times. As 

shown, with respect to the optimal start-time, the fixed 

start-time starts 45 minutes too soon. 

 

 

 

 

 

1  It more convenient to work in units of hours. Define: W-h = 

joules/hour and thermal resistance R = °F/W-h and time con-
stant τ = hours. 

 

 

 

 

 

 

 

Figure 1-3  Optimal Stop 

Figure 1-3 shows a hypothetical case illustrating the dif-

ference between optimal and fixed stop-time. With re-

spect to the optimal stop-time, the fixed stop-time starts 

2 hours later than it needs to. The takeaway is that this 

building’s stored heat is not taken advantage of. 

1.3. symbols  

The following table list symbols and definitions for var-

iables and parameters used in this report1.  

Sym Unit  Meaning 

W  J/s Watt = joules/sec  

hW  J/Hr 
Watts per hour. We will find it more convineient 
to work in units of hours rather than seconds  

spT  °F 
Steady state indoor temperature (set-point) in 
occupied mode 

oT  °F Outdoor temperature [°F] 

( )iT t  °F Internal building temperature at node i  

(0)iT  °F 
Indoor temperature at the start of the heat-up 

mode, (0)uo iT T  

uoT  °F Unoccupied set-point, (0)uo iT T  

gQ  W 
Capacity (watts) of the heat generator e.g., boiler, 
furnace, Air Conditioner 

gQ  W Average heat flux (watts) into the building 

  % Cycle time of the heat source in occupied mode 

iQ  W 
Heat flux (watts) absorbed by the building's 
thermal mass e.g., walls, furniture, air 

oQ  W Heat flux (watts) leaving the building i.e., leakage 

iR  °F/Wh Thermal resistance of the building 

iC  J/°F Thermal capacitance of the building.  

dT  Hrs 
Amount of time required to heat the building from 

uoT  to spT   

  Hrs 

Thermal time-constant of the building 

 

where units are:

/

i iR C

F J J
units Hr

Wh F J Hr

 =


→ = =



     
          

 

Table 1-1 Symbols and Definitions 

6:00 pm 8:00 am
time

Tsp 70

Tuo 60

Temp

Occupied Unoccupied Occupied

Cool Down Heat Up
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1.4. Thermal Networks 

Recall that most physically realizable systems can have 

one or more of the following types of elements:  

• Energy dissipating 

• Potential energy storing 

• Kinetic energy storing 

It is well known that any system containing only one 

type of energy storing elements can be modeled using 

first-order differential equations. Any system with both 

energy storing elements is modeled by second-order dif-

ferential equations.  

Typical systems we encounter in real life possess the 

energy elements described above. Examples of such 

systems include Electrical, Mechanical, Hydraulic, 

Pneumatic, Fluid, Acoustic and Magnetic. 

It is interesting to note that there is no element in any 

thermal system capable of storing kinetic energy, mak-

ing thermal systems unique among physical systems. 

Thermal systems are limited to one or more of the fol-

lowing types of elements: (1) energy dissipating and (2) 

potential energy storing. The absence of any kinetic en-

ergy storing elements means thermal systems are first-

order systems only. 

We facilitate the modeling of a thermal system by use of 

well-known thermoelectric analogies or thermal net-

works [3]. We list the following thermoelectric analo-

gies. 

Thermal Electrical 

Building Mass   Capacitor 

Temperature    Voltage 

Heat Flow    Current 

Thermal Resistance Resistance  

Table 1-2  Electromechanical analogies 

The thermal network for a single-zone space or building 

that is heated by a heat source such as a boiler or elec-

tric heater is shown below. 

Figure 1-4  Thermal Network 

Laplace Transform 

In systems analysis one of the most powerful tools 

available to the system engineer is the Laplace Trans-

form. The Laplace transform of a function ( )f t is de-

noted by ( )( )f tL or ( )F s . 

 ( )
0

( ) stf t f t e dt


=   L   (1.1) 

The Laplace transform is a linear transform frequently 

used to transform a time-domain system into to a sim-

pler complex-frequency domain system.  

The time-domain system is typically comprised of inte-

grals and derivatives as functions of the real variable t, 

whereas the complex-frequency system is a system of 

equations comprised of functions of the complex varia-

ble s i = + , where 1i = − . The complex-frequency 

system is a system of algebraic equations.  

The algebraic system is much simpler to manipulate 

than working directly with the time-domain system. For 

this reason, system analysis for complex electrical and 

mechanical systems is almost always done in the com-

plex-frequency domain.  

For those familiar with system analysis, to obtain the 

output response ( )y t of an arbitrary system in the time-

domain requires the convolution of the input function

( )f t with the system impulse response ( )h t  

( ) ( ) ( ) ( ) ( ) ( )f t h t y t y t f t h t→ →  =    

Figure 1-5 Time-domain Analysis 



Optimal Restart Algorithm for Heating and Cooling Buildings - J. Pattavina November 23, 2022   Version   01 
 

Earth Core Energy Services  4 of 12 

In the previous figure the symbol indicates convolu-

tion. Convolution is usually very tedious and complex 

to execute. On the other hand, to obtain the output 

( )Y s in the complex-frequency-domain requires multi-

plying the input function ( )F s by the system transfer 

function ( )H s   

( ) ( ) ( ) ( ) ( )F s H s Y s F s H s→ → =   

Figure 1-6 Frequency Domain Analysis  

Multiplication is far easier than convolution and this is 

the principal advantage of analysis in the complex-fre-

quency domain.  

To Summarize:  

It is desired to obtain the response ( )y t of a system with 

an impulse response ( )h t driven by an input function

( )f t . Figure 1-7 illustrates this process.  

( ) ( )

( ) ( ) ( ) ( ) ( )

f t y t

F s H s F s H s Y s

 

→ →  =

 

Figure 1-7 Analysis using Laplace Transform 

First, take the Laplace Transform of the input

( ) ( )f t F s→  and impulse response ( ) ( )h t H s→ . 

Next, obtain the system output response ( )Y s by multi-

plying ( )F s with ( )H s . Lastly, compute the Inverse La-

place Transform of ( )Y s to obtain the time-domain out-

put response ( )y t . 

The Inverse Laplace transform ( ) ( )Y s y t→ can be com-

puted by contour integration or by the method of resi-

dues, both of which are described in [4].  

We will utilize the complex-frequency domain method 

to analyze the thermal network in Figure 1-4. In this 

particular case, we will find it necessary to compute the 

Laplace transform of a derivative and a constant. 

The Laplace transform of a constant is 

 
k

k
s

=L   (1.2) 

Proof 

 
0 0

s t s tk k e dt k e dt

 
− −= = L   (1.3) 

Substitute ,u s t du s dt= − = − yields 

 

( )

0
0

0 . . .

u uk k
k e du e

s s

k k
e e Q E D

s s




−

 = − = −
 

= − − =

L
  (1.4) 

The Laplace transform of a derivative is 

 ( ) ( ) (0)f t sF s f = −L   (1.5) 

Proof 

 
0

( ) ( ) stf t f t e dt


− = L   (1.6) 

Integration by parts given 

,

( ) , ( )

st stu e du se dt

dv f t dt v f t

− −= = −

= =
  (1.7) 

Yields 

  ( )

 

0
0

0
0

0

( ) ( ) ( )

( ) ( )

( ) (0) ( )

st st

st st

f t e f t f t se dt

e f t s f t e dt

e f e f s f t




− −




− −

−

  = − −
 

 = +
 

=  − +





L

L

  

From which 

  . .( ) (0) ( ) .Q E Df t f sF s = − +L  (1.8) 

1.5. Heat-up 

From Figure 1-4 and utilizing the first law of thermody-

namics (energy conservation), we can write the balance 

equations in heat-up mode for the space at node i . That 

is, the heat into node i must equal the heat leaving the 

node, thus 

g i oQ Q Q= +  (1.9) 

The heat leakage oQ is due to heat lost arising from a 

temperature gradient ΔT across the building’s thermal 

resistance iR . 

( )i o
o

i

T t T
Q

R

−
=   (1.10) 

Observe if oQ is positive then ( ) ( )i oT t T t and heat flows 

out of the building. 
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The heat stored by the building's mass is proportional to 

the time-rate of change of indoor temperature ( )iT t . The 

constant of proportionality is known as the thermal ca-

pacitance iC and governs how quickly thermal energy 

can be stored and dissipated by the building mass. 

Therefore, the heat flux into the building mass is given 

by 

( )i i i
d

Q C T t
dt

=   (1.11)  

The pre-conditioning period is relatively short, in the or-

der 2 hours or less. Therefore, we can assume that the 

outside temperature during the pre-conditioning period 

is approximately constant 

( )o oT t T   (1.12) 

We also assume the heat source is turned on to full ca-

pacity with a duty cycle of 100% during heat-up. There-

fore, based on the energy balance at node i we have the 

Ordinary Differential Equation (ode) 

( )
( ) 0

i o
i i g

i

d T t T
C T t Q

dt R

−
+ − =   (1.13) 

Taking the Laplace Transform of the system ode yields 

( )
( )

( ) ( ) (0)
g o i

i i i i
i i

Q T T s
T s C sT s T

s sR R
= − − + − −  

 (1.14) 

We factor the denominator of ( )iT s as a product of its 

poles in the following form. 

( )( ) ( )

( )
( )

...
i

i i i

f s
T s

s k s k s k
=

+ + +
  (1.15) 

Factoring (1.14) yields 

( )

( )

(0)
( )

1

(0) /

1

i i i g i o
i

i i

i g i o

s R C T Q R T
T s

s sR C

sT Q C T

s s





+ +
=

+

+ +
=

+

  (1.16) 

Where i iR C = . 

The transient-response is found by taking the inverse 

Laplace Transform of ( )iT s . The inverse Laplace Trans-

form of (1.16) in this factored form can be computed 

by summing the residues as described in [4] where the 

definition of the residue for a  simple first-order pole at

1p is 

( )( ) ( )
1

1
1 1 2

( )( )
( ) lim

...

st

s p i

f s s p e
res p

s p s p s p→−

+
=

+ + +
  (1.17) 

The poles in (1.16) are 1 20, 1/p p = = from which 

the residues for ( )iT s are 

▶ The residue at 1 0p = is 

( )

0

0

res(0) lim ( )( 0)

(0) /
lim

1

/

1/

st
i

s

i g i o st

s

g i o
i g o

T s s e

sT Q C T
se

s s

Q C T
R Q T









→

→

= +

+ +
=

+

+
= = +

 (1.18) 

▶ The residue at 2 1/p = is 

( ) ( )

( )
( )

( )

1/

1/

/

/

res 1/ lim ( ) 1/

(0) /
lim 1

1

(0) / /

1/

(0)

st
i

s

i g i o st

s

i g i o t

t
i i g o

T s s e

sT Q C T
s e

s s

T Q C T
e

T R Q T e









 






 



→−

→−

−

−

= +

+ +
= +

+

− + +
=

−

= − −

(1.19) 

Upon summing the residues, the transient thermal re-

sponse for the heat-up mode is 

( )/( ) (0) [ ]t
hu i i g o i g oT t e T R Q T R Q T hrs−= − − + +

 (1.20) 

1.6. Cool-down period 

In the cool-down period the heat generator is off, 0gQ =

and the discharge heat flux given up by the thermal 

mass equals the negative of the leakage heat flux. That 

is, i oQ Q= − from which the system ode is 

( )
( ) 0

i o
i i

i

d T t T
C T t

dt R

−
+ =  (1.21) 

Taking the Laplace Transform of the system ode yields 

( )
( )

( ) ( ) (0)
o i

i i i i
i i

T T s
T s C sT s T

sR R
= − − +  (1.22) 

Initially at the beginning of cool-down, the indoor tem-

perature is at set point, so set (0)i spT T= then solve for

( )iT s and factor the denominator of ( )iT s as a product of 

its poles from which 

( ) ( )

/
( )

1 1/

i i sp o sp o
i

i i

sC R T T sT T
T s

s sR C s s





+ +
= =

+ +
 (1.23) 
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The poles in (1.23) are 1 20, 1/p p = = from which 

the residues for ( )iT s are: 

▶ The residue at 1 0p = is 

( )

( )

( )

( )

0

0

0

res(0) lim ( )( 0)

/
lim

1/

0 /

0 1/

st
i

s

st
sp o

s

t
sp o

o

T s s e

sT T se

s s

T T e
T









→

→

= +

+
=

+

+
= =

+

 (1.24) 

▶ The residue at 2 1/p = is 

( )( )

( )

( )

( )

1/

1/

/

/

res(1/ ) lim ( )( 1/ )

/ 1/
lim

1/

/ /

1/

st
i

s

st
sp o

s

t
sp o

t
sp o

T s s e

sT T s e

s s

T T e

e T T









 

 



 



→−

→−

−

−

= +

+ +
=

+

− +
=

−

= +

 (1.25) 

Upon summing the residues, the transient thermal re-

sponse for the cool-down mode is 

( )/( ) [ ]t
i sp o oT t e T T T hrs−= + +  (1.26) 

1.7. Thermal Time-constant 

The buildings thermal time-constant τ can be deter-

mined from the cool-down period. Given the cool-down 

equation (1.26) 

( )/( ) t
i sp o oT t e T T T−= + +  (1.27) 

Rearranging 

/ ( )i ot

sp o

T t T
e

T T

− −
=

−
 (1.28) 

Taking the log of both sides 

( )
ln

i o

sp o

t T t T

T T

 −
− =  

− 
 (1.29) 

Solving for τ  

( )
ln

i o

sp o

t

T t T

T T

 =
 −
 

− 

 (1.30) 

Since t is arbitrary, we can define a test point xt from 

which the thermal time-constant is 

( )
( )

ln

x
x

i x o

sp o

t
t

T t T

T T

 =
 −
 

− 

  (1.31) 

Example 1-1 

Given a system with τ = 5, Tsp = 70° and TO = 5°. Using 

cool-down, find the thermal time-constant τ. 

Solution 

We start by plotting the actual system for validation.  

 5, 70, 5sp osub T T= = = =   

( )

( )

/

/5

/5

e 70 5 5

e 5

( )

65

t
cd sp o

t

o

t

T t e T T T sub

−

−

−= +

− +

=

+ 

+

=  (1.32) 

The plot of the actual system ( )iT t is shown below. 

 

Figure 1-8  System cool-down 

Substituting t = 0.5 into (1.32) gives the observed cool-

down temperature at our test point. 

0.5/5e 6(0.5) 865 5 3. FiT − + ==  (1.33) 

Based only on our observed test-point and the following 

parameters we solve for τ. 

 . 7, , 55 00 sx p osub Tt T == = =  

0.5
4.99

63.8 5( ) lnln
70 5

x

i x o

sp o

t
sub hrs

T t T

T T

 =  = =
−   −

   − − 

 

From which the time-constant is 4.99 hours as expected 

1.8. Thermal Resistance 

During the occupied mode, the heat source gQ will tog-

gle on and off providing the average heat flux gQ neces-

sary to maintain temperature set-point spT  

on
g g g

off

t
Q Q Q

t
= =  (1.34) 
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If we measure the average heat flux g gQ Q= at steady 

state, the average internal temperature is ( )i spT t T= then 

the thermal resistance is given by 

( ) sp oi o
i

g g

T TT t T F
R

Q Q Wh 

−−  
= =  

 
 (1.35) 

Example 1-2 

A space is heated with a source 500gQ Wh = . At 

steady state the heat source cycle time is 50% = . The 

indoor set-point is 70spT =  and the outdoor temperature 

is 5oT =  . Find the thermal resistance for the space iR . 

Solution 

 70, 5, 500, 0.5sp o gT T Qsubs = = = ==  

 0.26 /
sp o

i
g

T T
R subs F Wh

Q

−
=  =   (1.36) 

1.9. Thermal Capacitance 

Given we have calculated the thermal time-constant

and thermal resistance iR as described above we can 

now calculate the thermal capacitance iC as follows 

/
i

i

JJ Hr
C Hr

R FF

  
 

 
= →   

 (1.37) 

We can define the thermal time-constant in terms of 

thermal resistance and capacitance. 

i iR C =  (1.38) 

As a check, we see the units of the time-constant is hrs. 

 i i
F Wh Hr

R C Hr
Wh F


 −   

= → →      
  

Example 1-3 

Given 0.26iR = from the previous example find Ci 

Solution 

 5, 0.26

19.2308i
i

is R

su

s

b
R

s

ub

C


 = ==

=  =
 (1.39) 

1.10. Heat-Up (As a Function of Tod) 

The space will be heated until the system has reached 

steady-state. At this point the heat source balances the 

heat loss ( ) /g sp od iQ T T R = − . From which the heat 

source is  

sp od
g

i

T T
Q

R

−
=  (1.40) 

By equation (1.20)  

( )/( ) (0)t
hu g i i o

g i o

T t e Q R T T

Q R T

−= − − +

+ +
 (1.41) 

Substituting which ( ) /g sp od iQ T T R = − into ( )huT t

yields the transient thermal response as a function of the 

design temperature odT . 

/( ) (0)
sp od sp odt

hu i o o

T T T T
T t e T T T

 

− − − 
= − − + + + + 

 

 (1.42) 

Example 1-4   

Assume we have designed a heat source for worst case 

outdoor temperature 0odT =  and we have measured a 

cycle-time 1 = . Plot the transient response to heat the 

space to steady state if the outdoor temperature is also

0oT =  . 

Solution 

/5

5, 70, (0) 60
:

0, 0, 1

( ) 70 10

sp

o od

t
hu

T Ti
subs

T T

T t subs e





−

= = = 
 

= = = 

 = −

  

We observe that the steady state temperature is 70° as 

expected. 

 

 

 

 

 

 

 

 

 

Figure 1-9 Slow rise-time 

Example 1-5  

Assume we have a heat source designed for worst case 

outdoor temperature 0odT =  and we have measured a 

cycle-time 1 = . Plot the transient response to heat the 

space to steady state if the outdoor temperature is 

30oT =  . 

Solution 

/5

5, 70, (0) 60
:

30, 0, 1

( ) 100 10

sp

o od

t
hu

T Ti
subs

T T

T t subs e





−

= = = 
 

= = = 

 = −

 (1.43) 
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We observe the temperature reaches 70° very quickly 

and rises approximately linearly. 

 

 

 

 

 

 

 

Figure 1-10 Fast rise-time 

1.11. Estimating Delay-time  

If we know the heat capacity of the average heat source 

gQ required to sustain steady state, we can estimate 

the time required to heat the space from (0)iT to spT

given we know the time-constant , the thermal re-

sistance iR and outside temperature oT .  

The delay-time dt is the time the heat must be turned on 

before the start of the occupied period in order for the 

space to be heated to the set-point temperature spT just in 

time for the start of the occupation period. 

Given the equation for heat-up 

( )( )/ 0( ) e t
g i i o g i ohuT Q R T T Q R Tt −− − + += +  

 (1.44) 

Setting ( )hu spT t T= and solving for dt gives the delay-

time as 

( )0
log

g i i o

g i o sp
dt

Q R T T

Q R T T


− + 
 


=
+ − 

 (1.45) 

If the start of the occupied period is oct then the optimal 

start-time st is given by s oc dt t t= − from which the start-

time is given by 

( )0
log

g i i o
oc

g i o sp
st

Q R T T
t

Q R T T


− + 
−  

+ −
=

 
 (1.46) 

Example 1-6 

Assume we have designed a heat source for worst case 

outdoor temperature 0odT = and the current outdoor 

temperature is 10oT =  . Plot the transient response to 

heat the space to steady state and calculate the dt re-

quired to heat the space to spT . 

Solution 

The system parameters are 

( )

5, 250, 0.3,

0 60, 10, 70

g i

i o sp

s b
Q

T
u

T
s

R

T

  
=  
 =

= = =

= =
  

Substituting into the heat-up equation (1.20) and the 

delay equation delay equation (1.45) yields 

/5

4

( ) 85 2 e

2.55

5

d

t
huT t ub

t

s s −= −

=
  

A plot of ( )huT t indicates, the time required to increase 

the initial internal space temperature from (0) 60iT =  to 

set-point 70spT =  is 2.55dt = hrs. 

 

Figure 1-11  
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2. NON-PARAMETRIC ALGORITHMS 

2.1. Fixed Start (Setback) 

The fixed setback is the simplest form of a non-optimal 

start algorithm. The Building Management System 

(BMS) will start the HVAC system at a fixed number of 

hours before occupancy as specified by the user [5]. 

Typically, this method is set once unless an exception 

day occurs. An exception day is a  day where the pre-

conditioning time dt is too short. In this case the system 

manager would ratchet back the start-time to ensure the 

set-point is met under worst case conditions. This is not 

an optimal start algorithm. 

2.2. Constant Temp Gradient 

A very simple adaptive start algorithm is based on a 

Constant Temperature Gradient that remains essentially 

the same from day to day [5]. In this case, the tempera-

ture gradient /s T hr=  is measured. The difference be-

tween the unoccupied space temperature uoT and the oc-

cupied set-point temperature spT is divided by s to calcu-

late the actual number of hours dt for pre-conditioning.  

ALGORITHM:  

Initializing: 

1. Measure rise-time /s T hr=    

2. Calculate the delay time 

( ) /d sp uot T T s= −   

3. Set start time s oc dt t t= −   

Periodic: 

4. Periodically initialize  

2.3. Adaptive Temp Gradient 

The Adaptive Temperature Gradient algorithm takes the 

arithmetic average of the actual temperature gradients 

calculated for a specified number of previous n days.  

Given ns is the rise-time on the nth day, a recursive al-

gorithm can be used to calculate the average of the past 

n rise-times in an iterative fashion.  

Defining the vector  0 1, nS s s s= as the set of the past 

n rise-times. The mean of the vector S denoted ns can 

be found recursively as follows: 

1
1 1

n n n
n

S S s
n n

−
−

  =   +   (1.47) 

Proof 

1

1 1

1

1

1 Q.E .D.

1 1 1

1 1 1

1

1 1

n n

n i i n

i i

n

i n

i

n n

S s s s
n n n

n
s s

n n n

n
S s

n n

−

= =

−

=

−

  = = +

−
= +

−

−
=   +

 

   

ALGORITHM:  

Initializing: 

1. Measure rise-time /s T Hr=    

2. Calculate the delay time 

 ( )d sp uot T T s= −    

3. Set start time s oc dt t t= −   

Daily Events: 

1. Measure rise-time ns for the current (nth) day 

2. Measure the average rise-time
n

s for the vector 

 0 1, ns s sS =   where: 

 1
1 1

n n n
n

S S S
n n

−
−

  =   +   

3. Calculate ( )d sp uo n
t T T s= −    

4. Set s oc dt t t= −   

2.4. Table Lookup 

This method requires measuring daily delay-times dt  

and outside air temperatures oT . The recordings are kept 

in a data base with one or two-degree bins e.g., 

30 32 , 32 34T T       etc. Eventually a complete 

history of delay-times vs. outside air temp will be accu-

mulated. Then it is a  simple matter of table-lookup.  

ALGORITHM 

Initialization 

 1.  Set delay-time td to worst case  

 2. Create a data base with two-degree temp-bins  

Daily Events 

1.  Measure oT and look up ( )dt bin  . 

2. Set ( )s oc dt t t bin= −   

3. Measure actual dt and update the temp-bin using

( ), ( )d dMax t t bin   
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3. PARAMETRIC ALGORITHMS  

3.1. Parametric Method 

Parametric algorithms use the thermal parameters of a 

building such as: thermal time-constant ,thermal re-

sistance iR and thermal capacitance iC .  

We can calculate a building's thermal time-constant

using the method described in section 1.7 and thermal 

resistance iR using the method described in section 1.8. 

If we know gQ , then we can measure oT and (0)iT to de-

termine the optimal start-time from (1.46) 

( )0
log

g i i o
oc

g i o sp
st

Q R T T
t

Q R T T


− + 
−  

+ −
=

 
  (1.48) 

3.2. Reference Curve Method (RCM) 

As noted in 3.1, the parametric method requires explicit 

knowledge of gQ for the space in question. This may not 

be known, since gQ may be supplying multiple zones. If 

we do not know gQ we can still determine the start-time 

by parametric means utilizing a novel Reference Curve 

Method (RCM) developed by the author.  

In this section we describe the RCM algorithm for pre-

dicting the indoor temperature curve. This provides an 

alternative to regression or temperature gradient tech-

niques. The principal advantage is that it eliminates the 

need to update a running data -base and perform regres-

sion calculations as described in [1]. 

The idea stems from the observation that in heat-up 

mode, the rise times between any two arbitrary days 

does not depend on , , (0)g sp iQ T T , since all these pa-

rameters are common (same value) to both days. Only 

oT differs. So, start by defining the temperature curve 

for two arbitrary days 

( )( )

1

1
/

1e 0t
g i i o

g i o

T Q R T T

Q R T

−−= − +

+ +
 (1.49) 

( )( )

2

2
/

2e 0t
g i i o

g i o

T Q R T T

Q R T

−−= − +

+ +
 (1.50) 

Now we define the difference between the two curves 

 12 1 2 2 1 12T T T T T T= − → = −   (1.51) 

From which 

( )( )/ /
12 1 2= e e 1t t

o oT T T − − −   (1.52) 

From which 2 T is determined by subtracting 12T from 

1T   

▶ 2 1 12T T T= −   (1.53) 

Observe that the difference between any two tempera-

ture curves is a function of only and the outdoor tem-

peratures 1oT for the target day and 2oT for an arbitrary 

test date. No explicit knowledge of gQ is needed. 

First, we first measure the indoor temperature curve by 

taking a temperature reading every 10 or 15 minutes and 

store the curve values in a database.  

Second, we calculate and measure 1oT and store results 

in memory. Now based on this stored reference curve,

and 1oT we can then determine the temperature curve for 

any day based solely of the knowledge of these stored 

values and outside temperature for the target day 2oT . 

This algorithm eliminates the need for table look-up or 

regression estimates which take many months to estab-

lish and does not require regression calculations.  

ALGORITHM (REFERENCE CURVE) 

Initialization (create reference data) 

1. Set delay time dt to worst case  

2. Measure 1oT and store in memory 

3. Calculate and store in memory 

4. Measure indoor temperature 1( )T t in 5-minute in-

crements, store in memory i.e., Table 3-1 

Daily Events 

5. Measure 2 ( )oT t  

6. Calculate 12 ( )T t and populate table 

7. Find t in the row of the table where 

12 1 2( )T t T T− =  

8. Set dt t=  
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Example 3-1  

Assume we have a building with the following parame-

ters: the outside temperature on the test day is 1 5oT =   

and the outside temperature on the target day is

2 30oT =  . We will attempt to generate an estimate of 

the temperature curve for the target day based solely on 

the reference curve and 1oT  . 

Solution 

Applying the algorithm 

1. Measure 2 ( ) 70oT t =   

2. Calculate 12 ( )T t and populate table 

3. Find t in the row of the table where 

12 1 2( ) 70 1.5T t T T t hr− = = → =  

4. Set 1.5dt hr=  

From the following table we see that for the current ex-

ample, the target day 2T reaches 70 in 1.5 hours. 

 
td 

Store 
T1 

Calculate 
T12 

 
T2(est) 

0.0 60.0 0.0 60.0 
0.1 60.4 -0.2 60.7 

0.2 60.9 -0.5 61.4 

0.3 61.3 -0.7 62.1 
0.4 61.8 -1.0 62.7 

0.5 62.2 -1.2 63.4 

0.6 62.6 -1.5 64.1 
0.7 63.0 -1.7 64.7 

0.8 63.5 -1.9 65.4 

0.9 63.9 -2.2 66.0 
1.0 64.3 -2.4 66.7 

1.1 64.7 -2.6 67.3 

1.2 65.1 -2.8 67.9 

1.3 65.5 -3.0 68.5 
1.4 65.9 -3.3 69.1 

1.5 66.3 -3.5 69.8 

1.6 66.7 -3.7 70.3 
1.7 67.0 -3.9 70.9 

1.8 67.4 -4.1 71.5 

1.9 67.8 -4.3 72.1 
2.0 68.2 -4.5 72.7 

2.1 68.5 -4.7 73.3 

2.2 68.9 -4.9 73.8 
2.3 69.2 -5.1 74.4 

2.4 69.6 -5.3 74.9 

2.5 70.0 -5.5 75.5 
2.6 70.3 -5.7 76.0 

2.7 70.6 -5.9 76.6 

2.8 71.0 -6.1 77.1 

2.9 71.3 -6.3 77.6 
3.0 71.7 -6.5 78.1 

Table 3-1  Reference Curve Memory 

To verify the results, we will plot the theoretical curves. 

Given the reference curves 

( )( )

1

1
/

1e 0t
g i i o

g i o

T Q R T T

Q R T

−−= − +

+ +
 (1.49) 

( )( )

2

2
/

2e 0t
g i i o

g i o

T Q R T T

Q R T

−−= − +

+ +
 (1.50) 

Substituting system parameters for the reference curve 

( ) 1 2

10, 500, 0.2,

0 60, 5, 70, 30

g i

i o sp o

s s
Q R

T T
b

T
u

T

  
=  
 

→ →

 = = = = 

→
  

For the reference day we have the following tempera-

ture curves 

/10

/10

1

2

105 45 e

130 70 e

t

t

T subs

T subs

−

−

=

 =

−

−
  (1.54) 

The estimate for the temperature curve on the target day 

is 2 1 12T T T= −  from which 

0
2

/1130 0( ) 7 tT t ees −−=   (1.55) 

We observe that the estimated temperature curve for the 

target day matches the actual temperature for the target 

day at 70°. Thus, we were able to predict the actual tem-

perature pre-conditioning time dt  for the target day 

with a knowledge of our reference curve.  

Since the reference curve is measured only once at ini-

tialization, the only parameter needed to be measured on 

a daily basis is 2oT .  

 

Figure 3-1 
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